Artificial Neural Network Approach for Mapping Contrasting Tillage Practices

نویسندگان

  • K. P. Sudheer
  • Prasanna Gowda
  • Indrajeet Chaubey
  • Terry Howell
چکیده

Tillage information is crucial for environmental modeling as it directly affects evapotranspiration, infiltration, runoff, carbon sequestration, and soil losses due to wind and water erosion from agricultural fields. However, collecting this information can be time consuming and costly. Remote sensing approaches are promising for rapid collection of tillage information on individual fields over large areas. Numerous regression-based models are available to derive tillage information from remote sensing data. However, these models require information about the complex nature of underlying watershed characteristics and processes. Unlike regression-based models, Artificial Neural Network (ANN) provides an efficient alternative to map complex nonlinear relationships between an input and output datasets without requiring a detailed knowledge of underlying physical relationships. Limited or no information currently exist quantifying ability of ANN models to identify contrasting tillage practices from remote sensing data. In this study, a set of Landsat TMbased ANN models was developed to identify contrasting tillage practices in the Texas High Plains. Observed tillage data from Moore and Ochiltree Counties were used to develop and evaluate the models, respectively. The overall classification accuracy for the 15 models developed with the Moore County dataset varied from 74% to 91%. Statistical evaluation of these models against the Ochiltree County dataset produced results with an overall classification accuracy varied from 66% to 80%. The ANN models based on TM band 5 or OPEN ACCESS Remote Sens. 2010, 2 580 indices of TM Band 5 may provide consistent and accurate tillage information when applied to the Texas High Plains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping Dieback Intensity Distribution in Zagros Oak Forests Using Geo-statistics and Artificial Neural Network

The first and most important issue in forest drought management is knowledge of the location and severity of forest decline. In this regard, we used geostatistics and artificial neural network methods to map the dieback intensity of oak forests in the  Ilam province, Iran. We used a systematic random sampling with a 250 × 200 m grid to establish 100 plots, each covering 1200 m2. The percentage ...

متن کامل

A comparison between knowledge-driven fuzzy and data-driven artificial neural network approaches for prospecting porphyry Cu mineralization; a case study of Shahr-e-Babak area, Kerman Province, SE Iran

The study area, located in the southern section of the Central Iranian volcano–sedimentary complex, contains a large number of mineral deposits and occurrences which is currently facing a shortage of resources. Therefore, the prospecting potential areas in the deeper and peripheral spaces has become a high priority in this region. Different direct and indirect methods try to predict promising a...

متن کامل

A Reliability Approach on Redesigning the Warehouses in Supply Chain with Uncertain Parameters via Integrated Monte Carlo Simulation and Tuned Artificial Neural Network

In this paper, a reliability approach on reconfiguration decisions in a supply chain network is studied based on coupling the simulation concepts and artificial neural network. In other words, due to the limited budget for warehouse relocation in a supply chain, the failure probability is assessed for determining the robust decision for future supply chain configuration. Traditional solving ...

متن کامل

Using Artificial Neural Network Algorithm to Predict Tensile Properties of Cotton-Covered Nylon Core Yarns

Artificial Neural Networks are information processing systems. Over the past several years, these algorithms have received much attention for their applications in pattern completing, pattern matching and classification and also for their use as a tool in various areas of problem solving. In this work, an Artificial Neural Network model is presented for predicting the tensile properties of co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2010